KOTHARI INTERNATIONAL SCHOOL

ACADEMIC PLAN

A LEVEL

SUBJECT: PHYSICS **SESSION:** 2023-24

NAME OF THE TEACHER: VIPIN KUMAR

MONTH	ΤΟΡΙΟ	CONCEPT	LEARNING OBJECTIVES
MARCH (9 DAYS)	CIRCULAR MOTION	Describing circular motion Angles in radians Steady speed, changing velocity Angular speed Centripetal forces Calculating acceleration and force The origins of centripetal forces	In this chapter students will learn how to: Express angular displacement in radians. Solve problems using the concept of angular speed describe motion along a circular path as due to a perpendicular force that causes a centripetal acceleration. Recall and use equations for centripetal acceleration.
APRIL (18 DAYS)	GRAVITATIONAL FIELDS	Representing a gravitational field Gravitational field strength g Energy in a gravitational field Gravitational potential Orbiting under gravity The orbital period Orbiting the Earth	In this chapter you will learn how to: Describe a gravitational field as a field of force and define gravitational field strength g.

	Represent a gravitational field using field lines.
	Understand the meaning of centre of mass and use the concept in problems involving uniform spheres.
	Recall and use Newton's law of gravitation.
	Solve problems involving the gravitational field strength of a uniform field and the field of a point mass understand how the gravitational potential energy,of two point masses is a consequence of gravitational potential define and solve problems involving gravitational potential.
	Analyse circular orbits in an inverse square law field, including geostationary orbits.

OSCILLATIONS	Free and forced oscillations	In this chapter students will
	Observing oscillations	learn how to:
	Describing oscillations	Give examples of free and
	Simple harmonic motion	forced oscillations.
	Representing s.h.m. graphically	
	Frequency and angular	Use appropriate
	frequency	terminology to describe
	Equations of s.h.m.	oscillations.
	Energy changes in s.h.m.	
	Damped oscillations	Use the equation $a = -\omega^2 x$ to
	Resonance	define simple harmonic
		motion (s.h.m.).
		Recall and use equations for
		displacement and velocity in
		s.h.m.
		Draw and use graphical
		representations of s.h.m.
		describe energy changes
		during s.h.m.
		Recall and use , where E is
		the total energy of a system
		undergoing simple
		harmonic motion
		describe the effects of
		damping on oscillations and
		draw graphs showing these
		effects.

		Understand that resonance involves a maximum amplitude of oscillation. Understand that resonance occurs when an oscillating system is forced to oscillate at its natural frequency.
THERMAL PHYSICS	Changes of state Energy changes Internal energy The meaning of temperature Thermometers Calculating energy changes	In this chapter students will learn how to: Relate a rise in temperature of an object to internal energy, the sum of the random distribution of kinetic and potential energies of the molecules in a system. Recall and use the first law of thermodynamics. Calculate the work done when the volume of a gas changes at constant pressure. Measure temperature using a physical property and state examples of such

			Use the thermodynamic scale of temperature, and understand that the lowest possible temperature is zero kelvin and that this is known as absolute zero. Relate transfer of (thermal) energy as being due to a difference in temperature and understand thermal equilibrium. Define and use specific heat capacity and specific latent
			heat, and outline how these quantities can be measured.
MAY (18 DAYS)	IDEAL GASES	Particles of a gas Explaining pressure Measuring gases Boyle's law Changing temperature Ideal gas equation Modelling gases: the kinetic model Temperature and molecular kinetic energy	In this chapter students will learn how to: Measure amounts of a substance in moles and find the number of particles using molar quantities. Solve problems using the equation of state pV = nRT for an ideal gas.
			Deduce a relationship between pressure, volume and the microscopic

		properties of the molecules of a gas, stating the assumptions of the kinetic theory of gases. Relate the kinetic energy of the molecules of a gas to its temperature and calculate root-mean-square speeds.
UNIFORM ELECTRIC FIELDS	Attraction and repulsion The concept of an electric field Electric field strength Force on a charge	In this chapter students will learn how to: Show an understanding of the concept of an electric field.
		Define electric field strength draw field lines to represent an electric field.
		Calculate the strength of a uniform electric field calculate the force on a charge in a uniform electric field.
		Describe how charged particles move in a uniform electric field.

JUNE			
SUMMER VACATION			
JULY (20 DAYS)	COULOMB'S LAW	Electric fields Coulomb's law Electric field strength for a radial field Electric potential Gravitational and electric fields	In this chapter students will learn how to: Recall and use Coulomb's law. Calculate the field strength for a point charge.
			Recognise that for the electric field strength for a point outside a spherical conductor, the charge on the sphere may be considered to be a point charge at the centre of the sphere.
			Define electric potential calculate potential due to a point charge.
			Relate field strength to the potential gradient compare and contrast electric and gravitational fields.

	CAPACITANCE	Capacitors in use Energy stored in a capacitor Capacitors in parallel Capacitors in series Comparing capacitors and resistors Capacitor networks Charge and discharge of capacitors	 In this chapter students will learn how to: Define capacitance and state its unit, the farad solve problems involving charge, voltage and capacitance. Deduce the electric potential energy stored in a capacitor from a potential—charge graph. Deduce and use formulae for the energy stored by a capacitor. Derive and use formulae for capacitances in series and parallel. Recognise and use graphs showing variation of potential difference, current and charge as a capacitor discharges. Recall and use the time constant for a capacitor—resistor circuit.
--	-------------	---	--

		Use the equation for the discharge of a capacitor through a resistor.
AND ELECTROMAGNETISM	magnetic fields Magnetic force Magnetic flux density Measuring magnetic flux density Currents crossing fields Forces between currents Relating SI units Comparing forces in magnetic, electric and gravitational fields	In this chapter students will learn how to: Describe a magnetic field as an example of a field of force caused by moving charges or permanent magnets. Use field lines to represent a field and sketch various patterns. Determine the size and direction of the force on a current-carrying conductor in a magnetic field. Define magnetic flux density and know how it can be measured. Explain the origin of the forces between current- carrying conductors and find the direction of these forces.

AUGUST (19 DAYS)	MOTION OF CHARGED PARTICLES	 Observing the force Orbiting charged particles Electric and magnetic fields The Hall effect Discovering the electron 	In this chapter you will learn how to: Determine the direction of the force on a charge moving in a magnetic field recall and use F = BQv sinθ. Describe the motion of a charged particle moving in a uniform magnetic field perpendicular to the direction of motion of the particle. Explain how electric and magnetic fields can be used in velocity selection understand the origin of the Hall voltage and derive and use the expression. Understand the use of a Hall probe to measure magnetic flux density.
	ELECTROMAGNETIC INDUCTION	Observing induction Explaining electromagnetic induction	In this chapter you will learn how to:

Faraday's law of electromagnetic induction Lenz's law Everyday examples of electromagnetic induction	Define magnetic flux as the product of the magnetic flux density and the cross- sectional area perpendicular to the direction of the magnetic flux density. Recall and use understand and use the concept of magnetic flux linkage. Understand and explain experiments that demonstrate: that a changing magnetic flux can induce an e.m.f. in a circuit that the direction of the induced e.m.f. opposes the change producing it the factors affecting the magnitude of the induced e.m.f. Recall and use Faraday's and Lenz's laws of electromagnetic induction.
--	--

ALTERNATING CURRENTS	Sinusoidal current Alternating voltages Power and alternating current Rectification	In this chapter you will learn how to: Understand and use the terms period, frequency and peak value as applied to an alternating current or voltage use equations of the form x = x0 sin ωt representing a sinusoidally alternating current or voltage. Recall and use the fact that the mean power in a resistive load is half the maximum power for a sinusoidal alternating
		current. Distinguish between root- mean-square (r.m.s.) and peak values and recall and use and for a sinusoidal alternating current. Distinguish graphically between half-wave and full- wave rectification explain the use of a single diode for the half-wave rectification of an alternating current.

			Explain the use of four diodes (bridge rectifier) for the full-wave rectification of an alternating current Analyse the effect of a single capacitor in smoothing, including the effect of the value of capacitance and the load resistance.
SEPTEMBER (22 DAYS)	QUANTUM PHYSICS AND REVISION	Modelling with particles and waves Particulate nature of light The photoelectric effect Threshold frequency and wavelength Photons have momentum too Line spectra Explaining the origin of line spectra Photon energies The nature of light: waves or particles? Electron waves Revisiting photons	In this chapter you will learn how to: Understand that electromagnetic radiation has a particulate nature understand that a photon is a quantum of electromagnetic energy recall and use E = hf. Use the electronvolt (eV) as a unit of energy. Understand that a photon has momentum and that the momentum is given by understand that photoelectrons may be emitted from a metal

surface when it is illuminated by electromagnetic radiation. Understand and use the terms threshold frequency and threshold wavelength explain photoelectric emission in terms of photon energy and work function energy. Recall and use explain why the maximum kinetic energy of photoelectrons is independent of intensity, whereas the photoelectric current is proportional to intensity understand that the photoelectric effect provides evidence for a particulate nature of electromagnetic radiation, while phenomena such as interference and diffraction provide evidence for a wave nature. Describe and interpret mailitatively the evidence	
electromagnetic radiation. Understand and use the terms threshold frequency and threshold wavelength explain photoelectric emission in terms of photon energy and work function energy. Recall and use explain why the maximum kinetic energy of photoelectrons is independent of intensity, whereas the photoelectric current is proportional to intensity understand that the photoelectric effect provides evidence for a particulate nature of electromagnetic radiation, while phenomena such as interference and diffraction provide evidence for a wave nature. Describe and interpret	
Understand and use the terms threshold frequency and threshold wavelength explain photoelectric emission in terms of photon energy and work function energy. Recall and use explain why the maximum kinetic energy of photoelectrons is independent of intensity, whereas the photoelectric current is proportional to intensity understand that the photoelectric effect provides evidence for a particulate nature of electromagnetic radiation, while phenomena such as interference and diffraction provide evidence for a wave nature. Describe and interpret	· ·
terms threshold frequency and threshold wavelength explain photoelectric emission in terms of photon energy and work function energy. Recall and use explain why the maximum kinetic energy of photoelectrons is independent of intensity, whereas the photoelectric current is proportional to intensity understand that the photoelectric effect provides evidence for a particulate nature of electromagnetic radiation, while phenomena such as interference and diffraction provide evidence for a wave nature. Describe and interpret	electromagnetic radiation.
terms threshold frequency and threshold wavelength explain photoelectric emission in terms of photon energy and work function energy. Recall and use explain why the maximum kinetic energy of photoelectrons is independent of intensity, whereas the photoelectric current is proportional to intensity understand that the photoelectric effect provides evidence for a particulate nature of electromagnetic radiation, while phenomena such as interference and diffraction provide evidence for a wave nature. Describe and interpret	Understand and use the
and threshold wavelength explain photoelectric emission in terms of photon energy and work function energy. Recall and use explain why the maximum kinetic energy of photoelectrons is independent of intensity, whereas the photoelectric current is proportional to intensity understand that the photoelectric effect provides evidence for a particulate nature of electromagnetic radiation, while phenomena such as interference and diffraction provide evidence for a wave nature. Describe and interpret	
explain photoelectric emission in terms of photon energy and work function energy. Recall and use explain why the maximum kinetic energy of photoelectrons is independent of intensity, whereas the photoelectric current is proportional to intensity understand that the photoelectric effect provides evidence for a particulate nature of electromagnetic radiation, while phenomena such as interference and diffraction provide evidence for a wave nature. Describe and interpret	1 0
emission in terms of photon energy and work function energy. Recall and use explain why the maximum kinetic energy of photoelectrons is independent of intensity, whereas the photoelectric current is proportional to intensity understand that the photoelectric effect provides evidence for a particulate nature of electromagnetic radiation, while phenomena such as interference and diffraction provide evidence for a wave nature. Describe and interpret	•
energy and work function energy.Recall and use explain why the maximum kinetic energy of photoelectrons is independent of intensity, whereas the photoelectric current is proportional to intensity understand that the photoelectric effect provides evidence for a particulate nature of electromagnetic radiation, while phenomena such as interference and diffraction provide evidence for a wave nature.Describe and interpret	
energy. Recall and use explain why the maximum kinetic energy of photoelectrons is independent of intensity, whereas the photoelectric current is proportional to intensity understand that the photoelectric effect provides evidence for a particulate nature of electromagnetic radiation, while phenomena such as interference and diffraction provide evidence for a wave nature. Describe and interpret	
Recall and use explain why the maximum kinetic energy of photoelectrons is independent of intensity, whereas the photoelectric current is proportional to intensity understand that the photoelectric effect provides evidence for a particulate nature of electromagnetic radiation, while phenomena such as interference and diffraction provide evidence for a wave nature. Describe and interpret	
explain why the maximum kinetic energy of photoelectrons is independent of intensity, whereas the photoelectric current is proportional to intensity understand that the photoelectric effect provides evidence for a particulate nature of electromagnetic radiation, while phenomena such as interference and diffraction provide evidence for a wave nature. Describe and interpret	chergy.
kinetic energy of photoelectrons is independent of intensity, whereas the photoelectric current is proportional to intensity understand that the photoelectric effect provides evidence for a particulate nature of electromagnetic radiation, while phenomena such as interference and diffraction provide evidence for a wave nature. Describe and interpret	Recall and use
kinetic energy of photoelectrons is independent of intensity, whereas the photoelectric current is proportional to intensity understand that the photoelectric effect provides evidence for a particulate nature of electromagnetic radiation, while phenomena such as interference and diffraction provide evidence for a wave nature. Describe and interpret	explain why the maximum
photoelectrons is independent of intensity, whereas the photoelectric current is proportional to intensity understand that the photoelectric effect provides evidence for a particulate nature of electromagnetic radiation, while phenomena such as interference and diffraction provide evidence for a wave nature. Describe and interpret	
whereas the photoelectric current is proportional to intensity understand that the photoelectric effect provides evidence for a particulate nature of electromagnetic radiation, while phenomena such as interference and diffraction provide evidence for a wave nature. Describe and interpret	
whereas the photoelectric current is proportional to intensity understand that the photoelectric effect provides evidence for a particulate nature of electromagnetic radiation, while phenomena such as interference and diffraction provide evidence for a wave nature. Describe and interpret	-
current is proportional to intensity understand that the photoelectric effect provides evidence for a particulate nature of electromagnetic radiation, while phenomena such as interference and diffraction provide evidence for a wave nature. Describe and interpret	-
intensity understand that the photoelectric effect provides evidence for a particulate nature of electromagnetic radiation, while phenomena such as interference and diffraction provide evidence for a wave nature. Describe and interpret	-
the photoelectric effect provides evidence for a particulate nature of electromagnetic radiation, while phenomena such as interference and diffraction provide evidence for a wave nature. Describe and interpret	
provides evidence for a particulate nature of electromagnetic radiation, while phenomena such as interference and diffraction provide evidence for a wave nature. Describe and interpret	
Image: space of the space	-
Image: constraint of the sector of the se	►
while phenomena such as interference and diffraction provide evidence for a wave nature. Describe and interpret	▲
interference and diffraction provide evidence for a wave nature. Describe and interpret	
provide evidence for a wave nature. Describe and interpret	
for a wave nature. Describe and interpret	
Describe and interpret	
	Describe and interpret
	qualitatively the evidence

			provided by electron diffraction for the wave nature of particles understand the de Broglie wavelength as the wavelength associated with a moving particle.
			Recall and use understand that there are discrete electron energy levels in isolated atoms (such as atomic hydrogen).
			Understand the appearance and formation of emission and absorption line spectra.
OCTOBER (13 DAYS)	NUCLEAR PHYSICS	Balanced equationsMass and energyEnergy released in radioactivedecayBinding energy and stabilityRandomness and radioactivedecayThe mathematics of radioactivedecay	In this chapter you will learn how to: Understand the equivalence between energy and mass as represented by $E = mc^2$ and recall and use this equation.
		Decay graphs and equations Decay constant λ and half-life t1/2	Represent simple nuclear reactions by nuclear equations.

Define and use the terms
mass defect and binding
energy.
Sketch the variation of
binding energy per nucleon
with nucleon number
explain what is meant by
nuclear fusion and nuclear
fission.
Explain the relevance of
binding energy per nucleon
to nuclear reactions,
including nuclear fusion
and nuclear fission
calculate the energy
released in nuclear reactions
using $\mathbf{E} = \Delta \mathbf{mc}^2$.
Understand that
fluctuations in count rate
provide evidence for the
random nature of
radioactive decay.
Understand that radioactive
decay is both spontaneous
and random.
Define activity and decay
constant, and recall and use
$\mathbf{A} = \lambda \mathbf{N}.$

		Define half-life . Understand the exponential nature of radioactive decay, and sketch and use the relationship $x = x_0 e^{-\lambda \tau}$, where x could represent activity, number of undecayed nuclei or received count rate.
MEDICAL IMAGING	Computerised axial tomography Using ultrasound in medicine Echo sounding Ultrasound scanning Positron Emission Tomography	learn how to: Explain how X-ray beams

NOVEMBER	ASTRONOMY AND	Standard candles	In this chapter you will
(21 DAYS)	COSMOLOGY	Luminosity and radiant flux intensity	learn how to:
		Stellar radii	Understand the term
		The expanding Universe	luminosity as the total power of radiation emitted by a star.
			Recall and use the inverse square law for radiant flux intensity F in terms of the luminosity L of the source.
			Understand that an object of known luminosity is called a standard candle.
			Understand the use of standard candles to determine distances to galaxies.
			Recall and use Wien's displacement law to estimate the peak surface temperature of a star.
			Use the Stefan-Boltzmann law $L = 4\pi\sigma r^2 T^4$.
			Use Wien's displacement law and the Stefan-

		Boltzmann law to estimate the radius of a star understand that the lines in the emission spectra from distant objects show an increase in wavelength from their known values use for the redshift of electromagnetic radiation from a source moving relative to an observer. Explain why redshift leads to the idea that the Universe is expanding. Recall and use Hubble's Law $v \approx H_0 d$ and explain how this leads to the Big Bang theory.
PRACTICAL SKILLS AT A LEVEL	Planning and analysis Planning Analysis of the data Treatment of uncertainties Conclusions and evaluation of results	In this chapter you will learn how to: Develop a systematic approach to carrying out experiments, including planning, setting up apparatus, investigating and recording results, analysing

DECEMBER (21 DAYS)	PRACTICE QUESTIONS FROM PAST PAPERS FOR PLANNING AND ANALYSIS COMPONENT	data and writing conclusions. Plan an investigation to test a relationship or investigate a problem, identifying the dependent,independent and control variables. Use logarithms and logarithmic graphs combine uncertainties, extending work from Practical Skills at AS Level. Plot error bars on graphs and find uncertainties in gradients and intercepts.
(15 DAYS)		

MOCK TEST OCTOBER NOVEMBER SERIES		
FEBRUARY (20 DAYS)	REVISION AND DOUBT SESSION	